Полиномиальная сводимость (трансформируемость): различия между версиями
KEV (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Полиномиальная сводимость (трансформируемость)''' (''[[Polinomial transformation]]'') | '''Полиномиальная сводимость (трансформируемость)''' (''[[Polinomial transformation]]'') — | ||
Язык <math>L</math> называется ''полиномиально сводимым (трансформируемым)'' к <math>L_0</math> | Язык <math>\,L</math> называется ''полиномиально сводимым (трансформируемым)'' к <math>\,L_0,</math> если некоторая ''[[машина Тьюринга]]'' с полиномиальной временной сложностью <math>\,M</math> преобразует каждую [[цепочка|цепочку]] <math>\,\omega</math> в алфавите языка <math>\,L</math> в такую цепочку <math>\,\omega_0</math> в [[алфавит|алфавите]] языка <math>\,L_0</math> (т.е. <math>\,M,</math> обрабатывая цепочку <math>\,\omega,</math> достигает заключительной конфигурации, в которой <math>\,\omega_0</math> — непустая часть ее ленты), что <math>\,\omega\in L</math> тогда и только тогда, когда <math>\,\omega_0\in L_0.</math> | ||
Отношение '''полиномиальной сводимости''' обладает свойством транзитивности. Поэтому, если уже известна ''[[NP-Полная задача|<math>{\mathcal NP}</math>-полнота'' одной из задач (одного из языков), то процедура доказательства <math>{\mathcal NP}</math>-полноты других задач (языков) может быть существенно упрощена. Для доказательства <math>{\mathcal NP}</math>-полноты задачи <math>P \in {\mathcal NP}</math> достаточно показать, что какая-нибудь из известных <math>{\mathcal NP}</math>-полных задач <math>P'</math> может быть сведена к <math>P</math> | Отношение '''полиномиальной сводимости''' обладает свойством транзитивности. Поэтому, если уже известна ''[[NP-Полная задача|<math>{\mathcal NP}</math>-полнота]]'' одной из задач (одного из языков), то процедура доказательства <math>{\mathcal NP}</math>-полноты других задач (языков) может быть существенно упрощена. Для доказательства <math>{\mathcal NP}</math>-полноты задачи <math>P \in {\mathcal NP}</math> достаточно показать, что какая-нибудь из известных <math>{\mathcal NP}</math>-полных задач <math>\,P'</math> может быть сведена к <math>\,P.</math> Таким образом, процесс доказательства <math>{\mathcal NP}</math>-полноты задачи <math>\,P</math> может состоять из следующих четырех шагов: | ||
(1) доказательства, что <math>P \in {\mathcal NP}</math>; | (1) доказательства, что <math>P \in {\mathcal NP}</math>; | ||
(2) выбора подходящей известной <math>{\mathcal NP}</math>-полной задачи <math>P'</math> | (2) выбора подходящей известной <math>{\mathcal NP}</math>-полной задачи <math>\,P';</math> | ||
(3) построения функции <math>f</math> | (3) построения функции <math>\,f,</math> сводящей задачу <math>\,P'</math> к задаче <math>\,P;</math> | ||
(4) доказательства того, что функция <math>f</math> осуществляет полиномиальное сведение. | (4) доказательства того, что функция <math>\,f</math> осуществляет полиномиальное сведение. | ||
==См. также == | ==См. также == | ||
''[[Задача о вершинном покрытии]], [[Задача о выполнимости]], [[Задача о клике]], [[Задача о неэквивалентности регулярных выражений]], [[Задача о разбиении]], [[Задача о точном покрытии 3-множествами]], [[Задача о трехмерном сочетании]], [[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]], [[Метод локальной замены]], [[Метод построения компонент]], [[Метод сужения задачи]], [[NP-Полная задача|<math>\mathcal NP</math>-полная задача]], [[Труднорешаемая задача]].'' | * ''[[Задача о вершинном покрытии]],'' | ||
* ''[[Задача о выполнимости]],'' | |||
* ''[[Задача о клике]],'' | |||
* ''[[Задача о неэквивалентности регулярных выражений]],'' | |||
* ''[[Задача о разбиении]],'' | |||
* ''[[Задача о точном покрытии 3-множествами]],'' | |||
* ''[[Задача о трехмерном сочетании]],'' | |||
* ''[[Классы P и NP|Классы <math>\mathcal P</math> и <math>\mathcal NP</math>]],'' | |||
* ''[[Метод локальной замены]],'' | |||
* ''[[Метод построения компонент]],'' | |||
* ''[[Метод сужения задачи]],'' | |||
* ''[[NP-Полная задача|<math>\mathcal NP</math>-полная задача]],'' | |||
* ''[[Труднорешаемая задача]].'' | |||
==Литература== | ==Литература== | ||
* Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979. | |||
* Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995. |
Текущая версия от 13:38, 8 июня 2011
Полиномиальная сводимость (трансформируемость) (Polinomial transformation) — Язык [math]\displaystyle{ \,L }[/math] называется полиномиально сводимым (трансформируемым) к [math]\displaystyle{ \,L_0, }[/math] если некоторая машина Тьюринга с полиномиальной временной сложностью [math]\displaystyle{ \,M }[/math] преобразует каждую цепочку [math]\displaystyle{ \,\omega }[/math] в алфавите языка [math]\displaystyle{ \,L }[/math] в такую цепочку [math]\displaystyle{ \,\omega_0 }[/math] в алфавите языка [math]\displaystyle{ \,L_0 }[/math] (т.е. [math]\displaystyle{ \,M, }[/math] обрабатывая цепочку [math]\displaystyle{ \,\omega, }[/math] достигает заключительной конфигурации, в которой [math]\displaystyle{ \,\omega_0 }[/math] — непустая часть ее ленты), что [math]\displaystyle{ \,\omega\in L }[/math] тогда и только тогда, когда [math]\displaystyle{ \,\omega_0\in L_0. }[/math]
Отношение полиномиальной сводимости обладает свойством транзитивности. Поэтому, если уже известна [math]\displaystyle{ {\mathcal NP} }[/math]-полнота одной из задач (одного из языков), то процедура доказательства [math]\displaystyle{ {\mathcal NP} }[/math]-полноты других задач (языков) может быть существенно упрощена. Для доказательства [math]\displaystyle{ {\mathcal NP} }[/math]-полноты задачи [math]\displaystyle{ P \in {\mathcal NP} }[/math] достаточно показать, что какая-нибудь из известных [math]\displaystyle{ {\mathcal NP} }[/math]-полных задач [math]\displaystyle{ \,P' }[/math] может быть сведена к [math]\displaystyle{ \,P. }[/math] Таким образом, процесс доказательства [math]\displaystyle{ {\mathcal NP} }[/math]-полноты задачи [math]\displaystyle{ \,P }[/math] может состоять из следующих четырех шагов:
(1) доказательства, что [math]\displaystyle{ P \in {\mathcal NP} }[/math];
(2) выбора подходящей известной [math]\displaystyle{ {\mathcal NP} }[/math]-полной задачи [math]\displaystyle{ \,P'; }[/math]
(3) построения функции [math]\displaystyle{ \,f, }[/math] сводящей задачу [math]\displaystyle{ \,P' }[/math] к задаче [math]\displaystyle{ \,P; }[/math]
(4) доказательства того, что функция [math]\displaystyle{ \,f }[/math] осуществляет полиномиальное сведение.
См. также
- Задача о вершинном покрытии,
- Задача о выполнимости,
- Задача о клике,
- Задача о неэквивалентности регулярных выражений,
- Задача о разбиении,
- Задача о точном покрытии 3-множествами,
- Задача о трехмерном сочетании,
- Классы [math]\displaystyle{ \mathcal P }[/math] и [math]\displaystyle{ \mathcal NP }[/math],
- Метод локальной замены,
- Метод построения компонент,
- Метод сужения задачи,
- [math]\displaystyle{ \mathcal NP }[/math]-полная задача,
- Труднорешаемая задача.
Литература
- Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979.
- Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.