Задача о точном покрытии 3-множествами
Перейти к навигации
Перейти к поиску
Задача о точном покрытии 3-множествами(3-Set exact cover problem) — одна из основных [math]\displaystyle{ \mathcal NP }[/math]-полных задач. Формулируется следующим образом.
Верно ли, что заданное семейство [math]\displaystyle{ C }[/math] трехэлементных подмножеств заданного конечного множества [math]\displaystyle{ X }[/math] такого, что [math]\displaystyle{ \mid X\mid =3q }[/math] для некоторого натурального [math]\displaystyle{ q }[/math], содержит точное покрытие множества [math]\displaystyle{ X }[/math], т.е. такое подсемейство [math]\displaystyle{ C'\subseteq C }[/math], что каждый элемент из [math]\displaystyle{ X }[/math] содержится ровно в одном элементе из [math]\displaystyle{ C }[/math]?
См. также
- Задача о вершинном покрытии,
- Задача о выполнимости,
- Задача о клике,
- Задача о неэквивалентности регулярных выражений,
- Задача о разбиении,
- Задача о трехмерном сочетании,
- Классы [math]\displaystyle{ \mathcal P }[/math] и [math]\displaystyle{ \mathcal NP }[/math],
- Метод локальной замены,
- Метод построения компонент,
- Метод сужения задачи,
- Полиномиальная сводимость (трансформируемость),
- [math]\displaystyle{ \mathcal NP }[/math]-полная задача,
- Труднорешаемая задача.
Литература
- Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979.
- Касьянов В.Н. Лекции по теории формальных языков, автоматов и сложности вычислений. — Новосибирск: НГУ, 1995.