Semicomplete c-partite digraph
Semicomplete [math]\displaystyle{ c }[/math]-partite digraph --- полуполный [math]\displaystyle{ c }[/math]-дольный орграф.
A semicomplete [math]\displaystyle{ c }[/math]-partite digraph is a digraph obtained from a complete [math]\displaystyle{ c }[/math]-partite graph by substituting each edge with an arc, or pair of mutually opposite arcs with the same end vertices. A semicomplete multipartite digraph (SMD) is a semicomplete [math]\displaystyle{ c }[/math]-partite digraph with [math]\displaystyle{ c \geq 2 }[/math]. Special cases of SMD's are semicomplete bipartite digraphs ([math]\displaystyle{ c = 2 }[/math]) and semicomplete digraphs ([math]\displaystyle{ c = n }[/math], the number of vertices). A [math]\displaystyle{ c }[/math]-partite tournament is a semicomplete [math]\displaystyle{ c }[/math]-partite digraph with no cycles of length 2, and, analogously, a multipartite tournament (MT) is a SMD wih no cycles of length 2.