P-Center

Материал из WikiGrapp
Перейти к навигации Перейти к поиску

[math]\displaystyle{ \,p }[/math]-Center[math]\displaystyle{ \,p }[/math]-центр.

A [math]\displaystyle{ \,p }[/math]-center of [math]\displaystyle{ \,G = (V,E) }[/math] is a set [math]\displaystyle{ C \subseteq V }[/math] that realizes the [math]\displaystyle{ \,p }[/math]-radius of [math]\displaystyle{ \,G }[/math].

The [math]\displaystyle{ \,p }[/math]-center problem is one of the main problems in facility location theory. For general graphs, the problem of finding [math]\displaystyle{ \,p }[/math]-centers is [math]\displaystyle{ \,NP }[/math]-hard. Polynomial algorithms for the [math]\displaystyle{ \,p }[/math]-center problem are known only for trees and almost-trees. The best known algorithms have time complexity [math]\displaystyle{ {\mathcal O}(|V|) }[/math] for unweighted trees and [math]\displaystyle{ {\mathcal O}(|V|\cdot \log^{2}|V|) }[/math] for weighted trees.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.