Oberwolfach problem
Перейти к навигации
Перейти к поиску
Oberwolfach problem --- проблема Обервольфаха.
The problem of determining whether there exists an [math]\displaystyle{ (m_{1}, m_{2}, \ldots, m_{t}) }[/math]-2-factorization of [math]\displaystyle{ K_{n} }[/math] when [math]\displaystyle{ n }[/math] is odd, or [math]\displaystyle{ K_{n} - F }[/math] when [math]\displaystyle{ n }[/math] is even, is the Oberwolfach problem, denoted [math]\displaystyle{ OP(m_{1}, m_{2}, \ldots, m_{t}) }[/math].
The Oberwolfach problem was formulated by Ringle in 1967.