Embedding of a graph
Embedding of a graph --- укладка графа, вложение графа.
An embedding of a graph [math]\displaystyle{ G }[/math] (into a complement [math]\displaystyle{ \bar{G} }[/math]) is a per\-mu\-ta\-tion [math]\displaystyle{ \sigma }[/math] on [math]\displaystyle{ V(G) }[/math] such that if an edge [math]\displaystyle{ xy }[/math] belongs to [math]\displaystyle{ E(G) }[/math], then [math]\displaystyle{ \sigma(x)\sigma(y) }[/math] does not belong to [math]\displaystyle{ E(G) }[/math]. If there exists an embedding of [math]\displaystyle{ G }[/math], we say that [math]\displaystyle{ G }[/math] is embeddable or that there is a packing of two copies of the graph [math]\displaystyle{ G }[/math] (of order [math]\displaystyle{ n }[/math]) into the complete graph [math]\displaystyle{ K_{n} }[/math].