Байесовская сеть

Материал из WikiGrapp
Перейти к навигации Перейти к поиску

Байесовская сеть (или сеть Байеса, байесова сеть, байесовская сеть доверия, англ. Bayesian network, belief network) — графическая вероятностная модель, представляющая множество переменных и их вероятностных зависимостей посредством ациклического орграфа. Например, байесовская сеть может быть использована для вычисления вероятности того, чем болен пациент по наличию или отсутствию ряда симптомов, основываясь на данных о зависимости между симптомами и болезнями. Математический аппарат сетей Байеса создан американским учёным Джудой Перлом, лауреатом Премии Тьюринга (2011).

Формально, байесовская сеть — это ациклический орграф, каждой вершине которого соответствует случайная переменная, а дуги графа кодируют отношения условной независимости между этими переменными. Вершины могут представлять переменные любых типов, быть взвешенными параметрами, скрытыми переменными или гипотезами. Существуют эффективные методы, которые используются для вычислений и обучения байесовских сетей.

Если переменные байесовской сети являются дискретными случайными величинами, то такая сеть называется дискретной байесовской сетью. Байесовские сети, которые моделируют последовательности переменных, называют динамическими байесовскими сетями. Байесовские сети, в которых могут присутствовать как дискретные переменные, так и непрерывные, называются гибридными байесовскими сетями. Байесовская сеть, в которой дуги помимо отношений условной независимости кодируют также отношения причинности, называют причинно-следственными байесовскими сетями (англ. causal bayesian networks).


Определения

Если из вершины A выходит дуга в вершину B, то A называют родителем B, а B называют потомком A. Если из вершины A существует ориентированный путь в вершину B, то A называется предком B, а B называется потомком A. Множество вершин-родителей вершины Vi обозначим как parents(Vi) = PAi.

Направленный ациклический граф G называется байесовской сетью для вероятностного распределения P(v), заданного над множеством случайных переменных V, если каждой вершине графа поставлена в соответствие случайная переменная из V, а дуги в графе удовлетворяют условию (марковское условие): любая переменная Vi из V должна быть условно независима от всех вершин, не являющихся её потомками, если заданы (получили означивание, обусловлены) все её прямые родители PAi в графе G, то есть

ViV справедливо: P(vipai,s) = P(vipai),

где vi — значение Vi; s — конфигурация S; S — множество всех вершин, не являющихся потомками Vi; pai — конфигурация PAi.

Тогда полное совместное распределение значений в вершинах можно удобно записать в виде декомпозиции (произведения) локальных распределений:

[math]\displaystyle{ \mathrm P(V_1, \ldots, V_n) = \prod_{i=1}^n \mathrm P(V_i \mid \operatorname{parents}(V_i)). }[/math]

Если у вершины Vi нет предков, то её локальное распределение вероятностей называют безусловным, иначе условным. Если вершина — случайная переменная получила означивание (например, в результате наблюдения), то такое означивание называют свидетельством. Если значение переменной было установлено извне (а не наблюдалось), то такое означивание называется вмешательством или интервенцией.

Условная независимость в байесовской сети представлена графическим свойством d-разделённости.