Factor-control-flow-graph: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Factor-control-flow-graph''' --- фактор-уграф. Let <math>R</math> be a set of alts of a cf-graph <math>G</math> such that every node of <math>G</math>…»)
 
Нет описания правки
 
Строка 20: Строка 20:
of some subset <math>Y\subset V(G)</math>.
of some subset <math>Y\subset V(G)</math>.
Then <math>R(G)</math> is defined as cf-graph <math>R'(G)</math>, where <math>R'=R\bigcup \{ \{p\}: p\in V(G)\setminus Y\}</math>.
Then <math>R(G)</math> is defined as cf-graph <math>R'(G)</math>, where <math>R'=R\bigcup \{ \{p\}: p\in V(G)\setminus Y\}</math>.
[[Категория: Сводимые и регуляризуемые графы]]

Текущая версия от 15:08, 11 сентября 2019

Factor-control-flow-graph --- фактор-уграф.

Let R be a set of alts of a cf-graph G such that every node of G belongs to a single alt from R, i.e. R forms a partition of V(G).

The cf-graph G in which V(G)=R is said to be obtained by reduction of alts R into nodes (notation G=R(G)) if the following properties hold:

(1) for any C1,C2R, (C1,C2)A(G) if and only if there are p1C1 and p2C2 such that (p1,p2)A(G),

(2) CR is the initial node of G if and only if C contains the initial node of G,

(3) CR is the terminal node of G if and only if C contains the terminal node of G.

The cf-graph G is called a factor-control-flow-graph (or factor-cf-graph) of the cf-graph G with respect to R.

Let R be a set of mutually disjoint alts of a cf-graph G that form a partitation of some subset YV(G). Then R(G) is defined as cf-graph R(G), where R=R{{p}:pV(G)Y}.