T-Code (in a graph): различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''<math>t</math>-Code (in a graph)''' --- <math>t</math>-код (в графе). A set <math>C \subseteq V(G)</math> is a '''<math>t</math>-code''' in <math>G</ma…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''<math>t</math>-Code (in a graph)''' --- <math>t</math>-код (в графе).  
'''<math>\,t</math>-Code (in a graph)''' — [[t-Код (в графе)|<math>\,t</math>-код (в графе)]].  


A set <math>C \subseteq V(G)</math> is a '''<math>t</math>-code''' in <math>G</math> if <math>d(u,v) \geq
A set <math>C \subseteq V(G)</math> is a '''<math>\,t</math>-code''' in <math>\,G</math> if <math>d(u,v) \geq 2t+1</math> for any two distinct [[vertex|vertices]] <math>\,u,v \in C</math>; <math>\,t</math>-codes are known as ''[[2-Packing of a graph|<math>\,2t</math>-packings]]''. In addition, <math>\,C</math> is called a '''[[t-Perfect code|<math>\,t</math>-perfect code]]''' if for any <math>u \in V(G)</math> there is exactly one <math>v \in C</math> such that
2t+1</math> for any two distinct vertices <math>u,v \in C</math>; <math>t</math>-codes are known
<math>d(u,v) \leq t</math>; 1-perfect codes are also called '''[[efficient dominating set|efficient dominating sets]]'''.
as ''<math>2t</math>-packings''. In addition, <math>C</math> is called a '''<math>t</math>-perfect
code''' if for any <math>u \in V(G)</math> there is exactly one <math>v \in C</math> such that
<math>d(u,v) \leq t</math>; 1-perfect codes are also called '''efficient dominating sets'''.


A set <math>C \subseteq V(G)</math> is a 1-perfect code if and only if the
A set <math>C \subseteq V(G)</math> is a 1-perfect code if and only if the ''[[closed neighbourhood|closed neighbourhoods]]'' of its elements form a partition of <math>\,V(G)</math>.
''closed neigbourhoods'' of its elements form a partition of <math>V(G)</math>.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 19:25, 12 ноября 2013

[math]\displaystyle{ \,t }[/math]-Code (in a graph)[math]\displaystyle{ \,t }[/math]-код (в графе).

A set [math]\displaystyle{ C \subseteq V(G) }[/math] is a [math]\displaystyle{ \,t }[/math]-code in [math]\displaystyle{ \,G }[/math] if [math]\displaystyle{ d(u,v) \geq 2t+1 }[/math] for any two distinct vertices [math]\displaystyle{ \,u,v \in C }[/math]; [math]\displaystyle{ \,t }[/math]-codes are known as [math]\displaystyle{ \,2t }[/math]-packings. In addition, [math]\displaystyle{ \,C }[/math] is called a [math]\displaystyle{ \,t }[/math]-perfect code if for any [math]\displaystyle{ u \in V(G) }[/math] there is exactly one [math]\displaystyle{ v \in C }[/math] such that [math]\displaystyle{ d(u,v) \leq t }[/math]; 1-perfect codes are also called efficient dominating sets.

A set [math]\displaystyle{ C \subseteq V(G) }[/math] is a 1-perfect code if and only if the closed neighbourhoods of its elements form a partition of [math]\displaystyle{ \,V(G) }[/math].

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.