Caterpillar: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Caterpillar''' --- гусеница. '''1.''' A ''tree'' such that the removal of all ''pendant vertices'' or leaves (vertices with exactly one neighbor) yields…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Caterpillar''' --- гусеница.  
'''Caterpillar''' — ''[[гусеница]].''


'''1.''' A ''tree'' such that the removal of all ''pendant vertices'' or
'''1.''' A ''[[tree]]'' such that the removal of all ''[[pendant vertex|pendant vertices]]'' or
leaves
[[leaf|leaves]]
(vertices with exactly one neighbor) yields a ''path'' is a '''caterpillar'''.
(vertices with exactly one neighbor) yields a ''[[path]]'' is a '''caterpillar'''.




'''2.''' A '''caterpillar''' is a graph derived from a path by hanging any  number
'''2.''' A '''caterpillar''' is a [[graph, undirected graph, nonoriented graph|graph]] derived from a path by hanging any  number
of pendant vertices from vertices of the path.
of pendant vertices from [[vertex|vertices]] of the path.


'''3.''' A '''caterpillar''' <math>C</math> is a tree of order <math>n \geq 3</math> whose ''pruned tree'' is a (possibly trivial) path.
'''3.''' A '''caterpillar''' <math>\,C</math> is a tree of order <math>n \geq 3</math> whose ''[[pruned tree]]'' is a (possibly trivial) path.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 17:43, 25 апреля 2012

Caterpillarгусеница.

1. A tree such that the removal of all pendant vertices or leaves (vertices with exactly one neighbor) yields a path is a caterpillar.


2. A caterpillar is a graph derived from a path by hanging any number of pendant vertices from vertices of the path.

3. A caterpillar [math]\displaystyle{ \,C }[/math] is a tree of order [math]\displaystyle{ n \geq 3 }[/math] whose pruned tree is a (possibly trivial) path.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.