F-Stable set: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''<math>f</math>-Stable set''' --- <math>f</math>-устойчивое множество. A set of vertices <math>S \subset V(G)</math> is said to be an ''' <mat…»)
 
мНет описания правки
 
Строка 6: Строка 6:
1 as <math>f</math>, an <math>f</math>-stable set is an ordinary '' stable set'' (also
1 as <math>f</math>, an <math>f</math>-stable set is an ordinary '' stable set'' (also
called an '' independent set''). The ''' <math>f</math>-stability number''',
called an '' independent set''). The ''' <math>f</math>-stability number''',
denoted by <math>\alpha_{f}(G) = \max\{|S|: \; S\mbox{ is an {\it f}-stable
denoted by <math>\alpha_{f}(G) = \max\{|S|: \; S\mbox{ is an } f \mbox{-stable   set}\}</math>.
set}\}</math>.

Текущая версия от 14:57, 24 сентября 2018

[math]\displaystyle{ f }[/math]-Stable set --- [math]\displaystyle{ f }[/math]-устойчивое множество.

A set of vertices [math]\displaystyle{ S \subset V(G) }[/math] is said to be an [math]\displaystyle{ f }[/math]-stable set, if [math]\displaystyle{ d_{G}(u,v) \geq f(u) + f(v) }[/math] holds for each pair of distinct vertices [math]\displaystyle{ u,v \in S }[/math]. If we take a constant function taking the value 1 as [math]\displaystyle{ f }[/math], an [math]\displaystyle{ f }[/math]-stable set is an ordinary stable set (also called an independent set). The [math]\displaystyle{ f }[/math]-stability number, denoted by [math]\displaystyle{ \alpha_{f}(G) = \max\{|S|: \; S\mbox{ is an } f \mbox{-stable set}\} }[/math].