F-Stable set: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''<math>f</math>-Stable set''' --- <math>f</math>-устойчивое множество. A set of vertices <math>S \subset V(G)</math> is said to be an ''' <mat…») |
ALEXM (обсуждение | вклад) мНет описания правки |
||
Строка 6: | Строка 6: | ||
1 as <math>f</math>, an <math>f</math>-stable set is an ordinary '' stable set'' (also | 1 as <math>f</math>, an <math>f</math>-stable set is an ordinary '' stable set'' (also | ||
called an '' independent set''). The ''' <math>f</math>-stability number''', | called an '' independent set''). The ''' <math>f</math>-stability number''', | ||
denoted by <math>\alpha_{f}(G) = \max\{|S|: \; S\mbox{ is an { | denoted by <math>\alpha_{f}(G) = \max\{|S|: \; S\mbox{ is an } f \mbox{-stable set}\}</math>. | ||
set}\}</math>. |
Текущая версия от 14:57, 24 сентября 2018
[math]\displaystyle{ f }[/math]-Stable set --- [math]\displaystyle{ f }[/math]-устойчивое множество.
A set of vertices [math]\displaystyle{ S \subset V(G) }[/math] is said to be an [math]\displaystyle{ f }[/math]-stable set, if [math]\displaystyle{ d_{G}(u,v) \geq f(u) + f(v) }[/math] holds for each pair of distinct vertices [math]\displaystyle{ u,v \in S }[/math]. If we take a constant function taking the value 1 as [math]\displaystyle{ f }[/math], an [math]\displaystyle{ f }[/math]-stable set is an ordinary stable set (also called an independent set). The [math]\displaystyle{ f }[/math]-stability number, denoted by [math]\displaystyle{ \alpha_{f}(G) = \max\{|S|: \; S\mbox{ is an } f \mbox{-stable set}\} }[/math].