Articulation point: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Articulation point''' --- точка сочленения графа, разделяющая вершина, шарнир. A vertex <math>v \in V</math> is an…») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Articulation point''' | '''Articulation point''' — [[точка сочленения графа]], [[разделяющая вершина]], | ||
шарнир. | [[шарнир]]. | ||
A vertex <math>v \in V</math> is an '''articulation point''' of a graph <math>G = | A [[vertex]] <math>v \in V</math> is an '''articulation point''' of a [[graph, undirected graph, nonoriented graph|graph]] <math>\,G = (V,E)</math> if <math>G(V \setminus \{v\})</math> is disconnected. A graph <math>\,G</math> is '''2-connected''' if <math>\,G</math> has no '''articulation points'''. The maximal 2-connected [[subgraph|subgraphs]] of <math>\,G</math> are the '''blocks''' of <math>\,G</math>. | ||
(V,E)</math> if <math>G(V \setminus \{v\})</math> is disconnected. A graph <math>G</math> is '''2-connected''' if <math>G</math> has no '''articulation points'''. The maximal 2-connected subgraphs | |||
of <math>G</math> are the '''blocks''' of <math>G</math>. | |||
Other names are '''Cutpoint, Cutting vertex, Cutvertex'''. | Other names are '''[[Cutpoint]], [[Cutting vertex]], [[Cutvertex]]'''. |
Версия от 11:47, 6 декабря 2011
Articulation point — точка сочленения графа, разделяющая вершина, шарнир.
A vertex [math]\displaystyle{ v \in V }[/math] is an articulation point of a graph [math]\displaystyle{ \,G = (V,E) }[/math] if [math]\displaystyle{ G(V \setminus \{v\}) }[/math] is disconnected. A graph [math]\displaystyle{ \,G }[/math] is 2-connected if [math]\displaystyle{ \,G }[/math] has no articulation points. The maximal 2-connected subgraphs of [math]\displaystyle{ \,G }[/math] are the blocks of [math]\displaystyle{ \,G }[/math].
Other names are Cutpoint, Cutting vertex, Cutvertex.