Adjoint digraph: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Создана новая страница размером '''Adjoint digraph''' --- сопряженный орграф. The ''' adjoint digraph''' is defined as a graph, that is, the one whose ...) |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Adjoint digraph''' | '''Adjoint digraph''' — ''[[сопряженный орграф]].'' | ||
The ''' adjoint digraph''' is defined as a graph, that is, the one whose arcs | The '''adjoint digraph''' is defined as a [[graph, undirected graph, nonoriented graph|graph]], that is, the one whose [[arc|arcs]] | ||
are exactly the converses for those of <math>G</math>. The ''adjacency operator'' <math>A(G^{\ast})</math> of <math>G^{\ast}</math> is the adjoint operator | are exactly the converses for those of <math>\,G</math>. The ''[[adjacency operator]]'' <math>A(G^{\ast})</math> of <math>G^{\ast}</math> is the adjoint operator | ||
<math>A(G)^{\ast}</math>. Though <math>G^{\ast}</math> is called the ''converse'' digraph | <math>A(G)^{\ast}</math>. Though <math>G^{\ast}</math> is called the [[converse digraph|''converse'' digraph]] | ||
of <math>G</math> among graph theorists, the term '''adjoint''' is often used in | of <math>\,G</math> among graph theorists, the term '''adjoint''' is often used in | ||
this sense. | this sense. | ||
The '''coadjoint graphs''' are graphs <math>G</math> and <math>G^{\ast}</math> | The '''[[coadjoint graphs]]''' are graphs <math>\,G</math> and <math>G^{\ast}</math> | ||
satisfying <math>G \cong G^{\ast}</math>. | satisfying <math>G \cong G^{\ast}</math>. |
Текущая версия от 15:02, 17 ноября 2011
Adjoint digraph — сопряженный орграф.
The adjoint digraph is defined as a graph, that is, the one whose arcs are exactly the converses for those of [math]\displaystyle{ \,G }[/math]. The adjacency operator [math]\displaystyle{ A(G^{\ast}) }[/math] of [math]\displaystyle{ G^{\ast} }[/math] is the adjoint operator [math]\displaystyle{ A(G)^{\ast} }[/math]. Though [math]\displaystyle{ G^{\ast} }[/math] is called the converse digraph of [math]\displaystyle{ \,G }[/math] among graph theorists, the term adjoint is often used in this sense.
The coadjoint graphs are graphs [math]\displaystyle{ \,G }[/math] and [math]\displaystyle{ G^{\ast} }[/math] satisfying [math]\displaystyle{ G \cong G^{\ast} }[/math].