Bandwidth: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
 
Строка 1: Строка 1:
'''Bandwidth''' — ''[[ширина полосы]].''  
'''Bandwidth''' — ''[[ширина полосы]].''  


Let <math>G = (V,E)</math> be a [[simple graph]]
Let <math>\,G = (V,E)</math> be a [[simple graph]]
and let <math>f</math> be a numbering of [[vertex|vertices]] of <math>G</math>.
and let <math>\,f</math> be a numbering of [[vertex|vertices]] of <math>\,G</math>.




<math>B(G,f) = \max_{(u,v) \in E} |f(u) - f(v)|</math>
<math>B(G,f) = \max_{(u,v) \in E} |f(u) - f(v)|</math>


is called the '''bandwidth''' of the numbering <math>f</math>.
is called the '''bandwidth''' of the numbering <math>\,f</math>.


The '''bandwidth''' of <math>G</math>, denoted
The '''bandwidth''' of <math>\,G</math>, denoted
<math>B(G)</math>, is defined to be the minimum bandwidth of numberings of <math>G</math>.
<math>\,B(G)</math>, is defined to be the minimum bandwidth of numberings of <math>\,G</math>.


The bandwidth problem for graphs has attracted many graph theorists
The bandwidth problem for graphs has attracted many graph theorists

Текущая версия от 17:24, 21 декабря 2011

Bandwidthширина полосы.

Let [math]\displaystyle{ \,G = (V,E) }[/math] be a simple graph and let [math]\displaystyle{ \,f }[/math] be a numbering of vertices of [math]\displaystyle{ \,G }[/math].


[math]\displaystyle{ B(G,f) = \max_{(u,v) \in E} |f(u) - f(v)| }[/math]

is called the bandwidth of the numbering [math]\displaystyle{ \,f }[/math].

The bandwidth of [math]\displaystyle{ \,G }[/math], denoted [math]\displaystyle{ \,B(G) }[/math], is defined to be the minimum bandwidth of numberings of [math]\displaystyle{ \,G }[/math].

The bandwidth problem for graphs has attracted many graph theorists for its strong practical background and theoretical interest. The decision problem for finding the bandwidths of arbitrary graphs is NP-complete, even for trees having the maximum degree 3, caterpillars with hairs of length at most 3 and cobipartite graphs. The problem is polynomially solvable for caterpillars with hairs of length 1 and 2, cographs, and interval graphs.

See also

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.