Colored distance: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Colored distance''' --- раскрашенное расстояние. The '''colored distance''' of a colored graph <math>G</math> is introduced as the sum of …»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Colored distance''' --- раскрашенное расстояние.  
'''Colored distance''' — ''[[раскрашенное расстояние]].''


The '''colored distance''' of a colored graph <math>G</math> is introduced as the sum of
The '''colored distance''' of a [[colored graph]] <math>\,G</math> is introduced as the sum of
distances between all unordered pairs of vertices having different
distances between all unordered pairs of [[vertex|vertices]] having different
colors. The '''chromatic distance''' of <math>G</math>, denoted by
colors. The '''[[chromatic distance]]''' of <math>\,G</math>, denoted by
<math>d_{ind}(G)</math>, is the mi\-ni\-mum colored distance of a proper coloring of
<math>\,d_{ind}(G)</math>, is the minimum colored distance of a proper coloring of
the vertex set.
the vertex set.
==Литература==
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 12:37, 23 сентября 2014

Colored distanceраскрашенное расстояние.

The colored distance of a colored graph [math]\displaystyle{ \,G }[/math] is introduced as the sum of distances between all unordered pairs of vertices having different colors. The chromatic distance of [math]\displaystyle{ \,G }[/math], denoted by [math]\displaystyle{ \,d_{ind}(G) }[/math], is the minimum colored distance of a proper coloring of the vertex set.

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.