Chord: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Chord'''--- хорда. '''1.''' (For a subgraph <math>G_{1}</math> of <math>G</math>) An edge <math>e \in E(G) - E(G_{1})</math> connecting two vertices of <ma…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Chord'''--- хорда.  
'''Chord''' — [[хорда]].  


'''1.''' (For a subgraph <math>G_{1}</math> of <math>G</math>) An edge <math>e \in E(G) - E(G_{1})</math>
'''1.''' (For a [[subgraph]] <math>\,G_{1}</math> of <math>\,G</math>) An [[edge]] <math>e \in E(G) - E(G_{1})</math>
connecting two vertices of <math>G_{1}</math> is called a '''chord'''.
connecting two [[vertex|vertices]] of <math>\,G_{1}</math> is called a '''chord'''.


'''2.''' (For a hypergraph) A '''chord''' of a ''hypercycle'' <math>C</math> is an edge
'''2.''' (For a [[hypergraph]]) A '''chord''' of a ''[[hypercycle]]'' <math>\,C</math> is an edge
<math>e</math> with <math>e_{i} \cap e_{i+1\pmod{k}} \subseteq e</math> for at least three
<math>\,e</math> with <math>e_{i} \cap e_{i+1\pmod{k}} \subseteq e</math> for at least three
indices <math>i, \; 1 \leq i \leq k</math>.
indices <math>\,i, \; 1 \leq i \leq k</math>.
 
==Литература==
 
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.

Текущая версия от 18:04, 28 марта 2013

Chordхорда.

1. (For a subgraph [math]\displaystyle{ \,G_{1} }[/math] of [math]\displaystyle{ \,G }[/math]) An edge [math]\displaystyle{ e \in E(G) - E(G_{1}) }[/math] connecting two vertices of [math]\displaystyle{ \,G_{1} }[/math] is called a chord.

2. (For a hypergraph) A chord of a hypercycle [math]\displaystyle{ \,C }[/math] is an edge [math]\displaystyle{ \,e }[/math] with [math]\displaystyle{ e_{i} \cap e_{i+1\pmod{k}} \subseteq e }[/math] for at least three indices [math]\displaystyle{ \,i, \; 1 \leq i \leq k }[/math].

Литература

  • Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.