Antiprism: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Новая страница: «'''Antiprism''' --- антипризма. The '''antiprism''' <math>A_{n}</math>, <math>n \geq 3</math>, is the plane regular graph of degree 4 (an Archimedean co…»)
 
Нет описания правки
 
Строка 1: Строка 1:
'''Antiprism''' --- антипризма.   
'''Antiprism''' — ''[[антипризма]].''  


The '''antiprism''' <math>A_{n}</math>, <math>n \geq 3</math>,
The '''antiprism''' <math>\,A_{n}</math>, <math>n \geq 3</math>, is the [[plane graph|plane]] [[regular graph]] of [[degree of a graph|degree]] 4 (an Archimedean convex  polytope).
is the plane regular graph of degree 4 (an Archimedean convex  polytope).
In particular, <math>\,A_{3}</math> is the octahedron.
In particular, <math>A_{3}</math> is the octahedron.


The '''<math>k</math>-antiprism''' is the 4-regular plane graph consisting of two
The '''<math>\,k</math>-antiprism''' is the 4-regular plane graph consisting of two
<math>k</math>-gons and <math>2k</math> triangles such that every vertex  is  incident  with
<math>\,k</math>-gons and <math>\,2k</math> [[triangle|triangles]] such that every [[vertex]] is  incident  with
three triangles and one <math>k</math>-gon.
three triangles and one <math>\,k</math>-gon.

Текущая версия от 14:03, 2 декабря 2011

Antiprismантипризма.

The antiprism [math]\displaystyle{ \,A_{n} }[/math], [math]\displaystyle{ n \geq 3 }[/math], is the plane regular graph of degree 4 (an Archimedean convex polytope). In particular, [math]\displaystyle{ \,A_{3} }[/math] is the octahedron.

The [math]\displaystyle{ \,k }[/math]-antiprism is the 4-regular plane graph consisting of two [math]\displaystyle{ \,k }[/math]-gons and [math]\displaystyle{ \,2k }[/math] triangles such that every vertex is incident with three triangles and one [math]\displaystyle{ \,k }[/math]-gon.