Алгоритм: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
 
(не показана 1 промежуточная версия этого же участника)
Строка 35: Строка 35:
* ''[[Машина Тьюринга]]'',  
* ''[[Машина Тьюринга]]'',  
* ''[[Параллельный алгоритм]]'',  
* ''[[Параллельный алгоритм]]'',  
* ''[[Последовательный алгоритм]]''.
* ''[[Последовательный алгоритм]]'',
* ''[[Теория алгоритмов]]''.
==Литература==  
==Литература==  


Строка 42: Строка 43:
* Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. —  М.: Мир, 1979.  
* Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. —  М.: Мир, 1979.  


* Евстигнеев В.А., Касьянов В.Н. Теория графов: алгоритмы обработки деревьев. — Новосибирск: Наука. Сиб. отд-ние, 1994.
* Kasyanov V. N., Evstigneev V. A. Graph theory for programmers. Algorithms for processing trees, Kluwer Academic Publishers, 2000


* Касьянов В.Н. Оптимизирующие преобразования программ. — М.: Наука, 1988.
* Касьянов В.Н. Оптимизирующие преобразования программ. — М.: Наука, 1988.
* Касьянов В.Н., Евстигнеев В. А. Графы в программировании: обработка, визуализация и применение. — СПб.: БХВ-Петербург, 2003.
* Касьянов В.Н., Касьянова Е.В. Теория вычислений. — Новосибирск: НГУ, 2018.


* Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. Теория и практика. — М.: Мир, 1980.
* Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. Теория и практика. — М.: Мир, 1980.

Текущая версия от 21:19, 28 октября 2024

Алгоритм (Algorithm) — точное предписание, которое задает вычислительный процесс (называемый в этом случае алгоритмическим), начинающийся с произвольного исходного данного (из некоторой совокупности возможных для данного алгоритма исходных данных) и направленный на получение полностью определяемого этим исходным данным результата (Математическая энциклопедия, Т.1. С. 202). Алгоритмический процесс есть процесс последовательного преобразования конструктивных объектов, проходящий дискретными шагами; каждый шаг состоит в смене одного конструктивного объекта другим. Алгоритмы характеризуются вычислительной сложностью и ёмкостной сложностью. По виду используемой вычислительной модели алгоритмы делятся на последовательные (или детерминированные), параллельные (или недетерминированные), распределенные и пр.

Подробнее об алгоритмах см. "Математическая энциклопедия", статьи "Алгоритм", "Алгоритм локальный", "Алгоритма сложность", "Алгоритмическая проблема", "Алгоритмическая сводимость", "Алгоритмов теория" и др., а также литературу, указанную в конце каждой статьи.

Алгоритмы на графах представляют собой частный случай общего понятия алгоритма; исходными данными для них служат абстрактные или помеченные графы. В процессе работы алгоритма могут создаваться новые графы или может изменяться система меток. Результатом работы алгоритма может быть граф, помеченный граф или конструктивный объект иной природы, например число или слово.

См. также

Литература

  • Успенский В.А., Семенов А.Л. Теория алгоритмов: основные понятия и приложения. — М.: Наука, 1987.
  • Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979.
  • Kasyanov V. N., Evstigneev V. A. Graph theory for programmers. Algorithms for processing trees, Kluwer Academic Publishers, 2000
  • Касьянов В.Н. Оптимизирующие преобразования программ. — М.: Наука, 1988.
  • Касьянов В.Н., Евстигнеев В. А. Графы в программировании: обработка, визуализация и применение. — СПб.: БХВ-Петербург, 2003.
  • Касьянов В.Н., Касьянова Е.В. Теория вычислений. — Новосибирск: НГУ, 2018.
  • Рейнгольд Э., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. Теория и практика. — М.: Мир, 1980.