Укладка уграфа: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
(Создана новая страница размером '''Укладка уграфа''' (''Node listing'') - отображение <math>F</math> множества целых чисел <ma...)
 
Нет описания правки
 
(не показаны 4 промежуточные версии 2 участников)
Строка 1: Строка 1:
'''Укладка уграфа''' (''Node listing'') -
'''Укладка уграфа''' (''[[Node listing]]'', ''[[Node seguence]]'') отображение <math>\,F</math> множества целых чисел
отображение <math>F</math> множества целых чисел
<math>\{i : 1 \leq i \leq k\}</math> на множество [[вершина|вершин]] <math>\,V</math> [[уграф|уграфа]] <math>\,G</math>; <math>\,k</math> называется ''длиной'' укладки.
<math>\{i : 1 \leq i \leq k\}</math> на множество вершин <math>V</math> уграфа <math>G</math>; <math>k</math>
называется ''длиной'' укладки.


Укладка уграфа <math>G</math> длины
Укладка уграфа <math>\,G</math> длины <math>\mid V \mid</math> называется его ''обходом'';
<math>\mid V \mid</math> называется его ''обходом'';
обход представляет собой последовательность вершин [[граф|графа]], перечисленных в порядке возрастания их номеров в некоторой ''[[нумерация вершин|нумерации вершин]]'' графа.
обход представляет собой последовательность вершин графа,
перечисленных в порядке возрастания их номеров
в некоторой ''нумерации вершин'' графа.


Укладка <math>F</math> называется ''сильной'', если любой простой путь <math>P</math>
Укладка <math>\,F</math> называется ''[[Сильная укладка графа|сильной]]'', если любой [[простой путь]] <math>\,P</math>
по <math>G</math> является ее подпоследовательностью, т.е.
по <math>\,G</math> является ее подпоследовательностью, т.е.


<math>P=(F(i_1),F(i_2), \ldots,F(i_s))</math>  
:::::<math>P=(F(i_1),F(i_2), \ldots,F(i_s))</math>  


для некоторых
для некоторых
<math>1\leq i_1 < i_2 < \ldots < i_s \leq k</math>.
<math>1\leq i_1 < i_2 < \ldots < i_s \leq k</math>.


Укладка <math>F</math> называется ''слабой'', если любой такой
Укладка <math>\,F</math> называется ''[[Слабая укладка графа|слабой]]'', если любой ''[[Несокращаемый путь|несокращаемый ]]'' путь по <math>\,G</math> является ее подпоследовательностью.
простой путь <math>P</math>
по <math>G</math>, из которого нельзя удалением некоторых внутренних вершин
получить другой простой путь по <math>G</math>, является ее
подпоследовательностью.


См. также ''Базисная нумерация, <math>K</math>-нумерация, <math>L</math>-нумерация, <math>M</math>-нумерация, <math>T</math>-нумерация, Обход графа, Правильная нумерация, Разумная нумерация, Топологическая сортировка.''
==См. также ==
* ''[[Базисная нумерация]],''
* ''[[K-Нумерация|<math>K</math>-нумерация]],''
* ''[[L-Нумерация|<math>L</math>-нумерация]],''
* ''[[M-Нумерация|<math>M</math>-нумерация]],''
* ''[[T-Нумерация|<math>T</math>-нумерация]],''
* ''[[Обход графа]],''
* ''[[Правильная нумерация]],''
* ''[[Разумная нумерация]],''
* ''[[Топологическая сортировка]].''
==Литература==
==Литература==
[Касьянов/88],  
* Евстигнеев В.А., Касьянов В.Н. Теория графов: алгоритмы обработки деревьев. — Новосибирск: Наука. Сиб. отд-ние, 1994.


[Евстигнеев-Касьянов/94]
* Касьянов В.Н. Оптимизирующие преобразования программ. — М.: Наука, 1988.
 
 
[[Категория:Потоковый анализ программ]]

Текущая версия от 09:11, 5 ноября 2024

Укладка уграфа (Node listing, Node seguence) — отображение [math]\displaystyle{ \,F }[/math] множества целых чисел [math]\displaystyle{ \{i : 1 \leq i \leq k\} }[/math] на множество вершин [math]\displaystyle{ \,V }[/math] уграфа [math]\displaystyle{ \,G }[/math]; [math]\displaystyle{ \,k }[/math] называется длиной укладки.

Укладка уграфа [math]\displaystyle{ \,G }[/math] длины [math]\displaystyle{ \mid V \mid }[/math] называется его обходом; обход представляет собой последовательность вершин графа, перечисленных в порядке возрастания их номеров в некоторой нумерации вершин графа.

Укладка [math]\displaystyle{ \,F }[/math] называется сильной, если любой простой путь [math]\displaystyle{ \,P }[/math] по [math]\displaystyle{ \,G }[/math] является ее подпоследовательностью, т.е.

[math]\displaystyle{ P=(F(i_1),F(i_2), \ldots,F(i_s)) }[/math]

для некоторых [math]\displaystyle{ 1\leq i_1 \lt i_2 \lt \ldots \lt i_s \leq k }[/math].

Укладка [math]\displaystyle{ \,F }[/math] называется слабой, если любой несокращаемый путь по [math]\displaystyle{ \,G }[/math] является ее подпоследовательностью.

См. также

Литература

  • Евстигнеев В.А., Касьянов В.Н. Теория графов: алгоритмы обработки деревьев. — Новосибирск: Наука. Сиб. отд-ние, 1994.
  • Касьянов В.Н. Оптимизирующие преобразования программ. — М.: Наука, 1988.