Запрещенный подграф: различия между версиями
Перейти к навигации
Перейти к поиску
KEV (обсуждение | вклад) Нет описания правки |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Запрещенный подграф''' (''[[Forbidden subgraph]]'') | '''Запрещенный подграф''' (''[[Forbidden subgraph]]'') — Говорят, что ''[[уграф]]'' содержит | ||
запрещенный подграф, если в нем существуют различные [[вершина|вершины]] <math>p_1</math>, <math>p_2</math> и <math>p_3</math>, что найдутся непересекающиеся по [[внутренняя вершина|внутренним вершинам]] [[простой путь|простые пути]] <math>P_{0,1}</math>, <math>P_{1,2}</math>, <math>P_{1,3}</math>, <math>P_{2,3}</math>, <math>P_{3,2}</math>, где <math>P_{i,j}</math> обозначает [[путь]] от вершины <math>p_i</math> до <math>p_j</math>. Отсутствие в уграфе запрещенного подграфа равносильно ''регуляризуемости уграфа''. | запрещенный подграф, если в нем существуют различные [[вершина|вершины]] <math>p_1</math>, <math>p_2</math> и <math>p_3</math>, что найдутся непересекающиеся по [[внутренняя вершина|внутренним вершинам]] [[простой путь|простые пути]] <math>P_{0,1}</math>, <math>P_{1,2}</math>, <math>P_{1,3}</math>, <math>P_{2,3}</math>, <math>P_{3,2}</math>, где <math>P_{i,j}</math> обозначает [[путь]] от вершины <math>p_i</math> до <math>p_j</math>. Отсутствие в уграфе запрещенного подграфа равносильно ''регуляризуемости уграфа''. | ||
Строка 5: | Строка 5: | ||
==См. также== | ==См. также== | ||
''[[Аранжируемый граф]], [[Одновходовый граф]], [[Разборный граф]], [[Сводимый управляющий граф]]'' | * ''[[Аранжируемый граф]],'' | ||
* ''[[Одновходовый граф]],'' | |||
* ''[[Разборный граф]],'' | |||
* ''[[Сводимый управляющий граф]].'' | |||
==Литература== | ==Литература== | ||
* Евстигнеев В.А., Касьянов В.Н. Теория графов: алгоритмы обработки деревьев. — Новосибирск: Наука. Сиб. отд-ние, 1994. | |||
* Касьянов В.Н. Оптимизирующие преобразования программ. — М.: Наука, 1988. |
Версия от 15:49, 18 февраля 2011
Запрещенный подграф (Forbidden subgraph) — Говорят, что уграф содержит запрещенный подграф, если в нем существуют различные вершины [math]\displaystyle{ p_1 }[/math], [math]\displaystyle{ p_2 }[/math] и [math]\displaystyle{ p_3 }[/math], что найдутся непересекающиеся по внутренним вершинам простые пути [math]\displaystyle{ P_{0,1} }[/math], [math]\displaystyle{ P_{1,2} }[/math], [math]\displaystyle{ P_{1,3} }[/math], [math]\displaystyle{ P_{2,3} }[/math], [math]\displaystyle{ P_{3,2} }[/math], где [math]\displaystyle{ P_{i,j} }[/math] обозначает путь от вершины [math]\displaystyle{ p_i }[/math] до [math]\displaystyle{ p_j }[/math]. Отсутствие в уграфе запрещенного подграфа равносильно регуляризуемости уграфа.
См. также
Литература
- Евстигнеев В.А., Касьянов В.Н. Теория графов: алгоритмы обработки деревьев. — Новосибирск: Наука. Сиб. отд-ние, 1994.
- Касьянов В.Н. Оптимизирующие преобразования программ. — М.: Наука, 1988.