Cycle cover problem: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Cycle cover problem''' --- задача о покрытии графа циклами. Let <math>G = (V,E)</math> be a connected undirected graph. A non-negativ…») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Cycle cover problem''' | '''Cycle cover problem''' — ''[[задача о покрытии графа циклами]]''. | ||
Let <math>G = (V,E)</math> be a connected undirected graph. A non-negative cost or length | Let <math>\,G = (V,E)</math> be a [[connected graph|connected undirected graph]]. A non-negative cost or length is associated with each [[edge]]. The '''cycle cover problem''' consists in determining a least cost cover of <math>\,G</math> with [[simple cycle|simple cycles]], each containing at least three different edges. | ||
is associated with each edge. The '''cycle cover problem''' consists in | |||
determining a least cost cover of <math>G</math> with simple cycles, each | ==Литература== | ||
containing at least three different edges. | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 13:37, 21 декабря 2021
Cycle cover problem — задача о покрытии графа циклами.
Let [math]\displaystyle{ \,G = (V,E) }[/math] be a connected undirected graph. A non-negative cost or length is associated with each edge. The cycle cover problem consists in determining a least cost cover of [math]\displaystyle{ \,G }[/math] with simple cycles, each containing at least three different edges.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.