Коды, свободные от повторений: различия между версиями

Материал из WikiGrapp
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
 
(не показана 1 промежуточная версия 1 участника)
Строка 1: Строка 1:
 
'''Коды, свободные от повторений''' (''[[Repetition-free scheme]]'') относятся к классу ''[[линейный код|линейных кодов]]'' [[дерево|деревьев]], которые строятся в процессе [[обход графа в глубину|обхода их в глубину]]. Используются следующие варианты:
'''Коды, свободные от повторений''' (''[[Repetition-free scheme]]'') - относятся к классу ''[[линейный код|линейных кодов]]'' [[дерево|деревьев]], которые строятся в процессе [[обход графа в глубину|обхода их в глубину]]. Используются следующие варианты:


[[Файл:Repetition-free scheme.png|250px|right]]
[[Файл:Repetition-free scheme.png|250px|right]]
Строка 13: Строка 12:


==См. также==  
==См. также==  
''[[Код Гапта для 2-3-деревьев]], [[Коды Ли]], [[Коды с дублированием номеров вершин]], [[Коды с использованием ограничителей]], [[Линейный код]], [[Уровневые коды корневых деревьев]].''
* ''[[Код Гапта для 2-3-деревьев]],''
* ''[[Коды Ли]],''
* ''[[Коды с дублированием номеров вершин]],''
* ''[[Коды с использованием ограничителей]],''
* ''[[Линейный код]],''
* ''[[Уровневые коды корневых деревьев]].''
==Литература==
==Литература==
[Евстигнеев-Касьянов/94]
* Евстигнеев В.А., Касьянов В.Н. Теория графов: алгоритмы обработки деревьев. — Новосибирск: Наука. Сиб. отд-ние, 1994.
 
[[Категория: Коды деревьев]]

Текущая версия от 15:23, 9 октября 2019

Коды, свободные от повторений (Repetition-free scheme) — относятся к классу линейных кодов деревьев, которые строятся в процессе обхода их в глубину. Используются следующие варианты:

Repetition-free scheme.png

1. В качестве кода берется последовательность полустепеней исхода вершин, выписываемых в порядке, в котором вершины встречаются при обходе, с одним ограничением: при обратном движении по дереву полустепени исхода не повторяются. Бинарные деревья при таком кодировании восстанавливаются неоднозначно.

2. В качестве кода берется последовательность расстояний вершин от корня (корень не кодируется). Для деревьев, у которых полустепени исхода вершин равны 2 или 0, достаточно записывать расстояния от корня только для висячих вершин. Бинарные деревья при таком кодировании восстанавливаются неоднозначно.

3. В качестве кода берется последовательность числа вершин в поддереве с корнем в рассматриваемой в данный момент вершине.

См. также

Литература

  • Евстигнеев В.А., Касьянов В.Н. Теория графов: алгоритмы обработки деревьев. — Новосибирск: Наука. Сиб. отд-ние, 1994.