Caterpillar: различия между версиями
		
		
		
		
		
		Перейти к навигации
		Перейти к поиску
		
				
		
		
	
Glk (обсуждение | вклад)  (Новая страница: «'''Caterpillar''' --- гусеница.   '''1.''' A ''tree'' such that the removal of all ''pendant vertices'' or leaves (vertices with exactly one neighbor) yields…»)  | 
				KEV (обсуждение | вклад)  Нет описания правки  | 
				||
| Строка 1: | Строка 1: | ||
'''Caterpillar'''   | '''Caterpillar''' — ''[[гусеница]].''   | ||
'''1.''' A ''tree'' such that the removal of all ''pendant vertices'' or  | '''1.''' A ''[[tree]]'' such that the removal of all ''[[pendant vertex|pendant vertices]]'' or  | ||
leaves  | [[leaf|leaves]]  | ||
(vertices with exactly one neighbor) yields a ''path'' is a '''caterpillar'''.  | (vertices with exactly one neighbor) yields a ''[[path]]'' is a '''caterpillar'''.  | ||
'''2.''' A '''caterpillar''' is a graph derived from a path by hanging any  number  | '''2.''' A '''caterpillar''' is a [[graph, undirected graph, nonoriented graph|graph]] derived from a path by hanging any  number  | ||
of pendant vertices from vertices of the path.  | of pendant vertices from [[vertex|vertices]] of the path.  | ||
'''3.''' A '''caterpillar''' <math>C</math> is a tree of order <math>n \geq 3</math> whose ''pruned tree'' is a (possibly trivial) path.  | '''3.''' A '''caterpillar''' <math>\,C</math> is a tree of order <math>n \geq 3</math> whose ''[[pruned tree]]'' is a (possibly trivial) path.  | ||
==Литература==  | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.  | |||
Текущая версия от 10:43, 25 апреля 2012
Caterpillar — гусеница.
1. A tree such that the removal of all pendant vertices or leaves (vertices with exactly one neighbor) yields a path is a caterpillar.
2. A caterpillar is a graph derived from a path by hanging any  number
of pendant vertices from vertices of the path.
3. A caterpillar [math]\displaystyle{ \,C }[/math] is a tree of order [math]\displaystyle{ n \geq 3 }[/math] whose pruned tree is a (possibly trivial) path.
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.