Bipanpositionable graph: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Bipanpositionable graph''' --- бипанпропозицируемый граф. A bipartite hamiltonian graph <math>G</math> is '''bipanpropositionable''' if …») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Bipanpositionable graph''' | '''Bipanpositionable graph''' — ''[[бипанпропозицируемый граф]].'' | ||
A bipartite hamiltonian graph <math>G</math> is '''bipanpropositionable''' if for | A bipartite [[hamiltonian graph]] <math>\,G</math> is '''bipanpropositionable''' if for | ||
any two different vertices <math>x</math> and <math>y</math> of <math>G</math> and for any integer <math>k</math> | any two different [[vertex|vertices]] <math>\,x</math> and <math>\,y</math> of <math>\,G</math> and for any integer <math>\,k</math> | ||
with <math>d_{G}(x,y) \leq k < |V(G)|/2</math> and <math>(k - D_{G}(x,y))</math> is even, | with <math>d_{G}(x,y) \leq k < |V(G)|/2</math> and <math>\,(k - D_{G}(x,y))</math> is even, | ||
there exists a hamiltonian cycle <math>C</math> of <math>G</math> such that <math>d-{C}(x,y) = k</math>. | there exists a [[hamiltonian cycle]] <math>\,C</math> of <math>\,G</math> such that <math>\,d-{C}(x,y) = k</math>. | ||
==Литература== | |||
* Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009. |
Текущая версия от 18:03, 21 февраля 2012
Bipanpositionable graph — бипанпропозицируемый граф.
A bipartite hamiltonian graph [math]\displaystyle{ \,G }[/math] is bipanpropositionable if for any two different vertices [math]\displaystyle{ \,x }[/math] and [math]\displaystyle{ \,y }[/math] of [math]\displaystyle{ \,G }[/math] and for any integer [math]\displaystyle{ \,k }[/math] with [math]\displaystyle{ d_{G}(x,y) \leq k \lt |V(G)|/2 }[/math] and [math]\displaystyle{ \,(k - D_{G}(x,y)) }[/math] is even, there exists a hamiltonian cycle [math]\displaystyle{ \,C }[/math] of [math]\displaystyle{ \,G }[/math] such that [math]\displaystyle{ \,d-{C}(x,y) = k }[/math].
Литература
- Евстигнеев В.А., Касьянов В.Н. Словарь по графам в информатике. — Новосибирск: Сибирское Научное Издательство, 2009.