Antiprism: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Новая страница: «'''Antiprism''' --- антипризма. The '''antiprism''' <math>A_{n}</math>, <math>n \geq 3</math>, is the plane regular graph of degree 4 (an Archimedean co…») |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Antiprism''' | '''Antiprism''' — ''[[антипризма]].'' | ||
The '''antiprism''' <math>A_{n}</math>, <math>n \geq 3</math>, | The '''antiprism''' <math>\,A_{n}</math>, <math>n \geq 3</math>, is the [[plane graph|plane]] [[regular graph]] of [[degree of a graph|degree]] 4 (an Archimedean convex polytope). | ||
is the plane regular graph of degree 4 (an Archimedean convex polytope). | In particular, <math>\,A_{3}</math> is the octahedron. | ||
In particular, <math>A_{3}</math> is the octahedron. | |||
The '''<math>k</math>-antiprism''' is the 4-regular plane graph consisting of two | The '''<math>\,k</math>-antiprism''' is the 4-regular plane graph consisting of two | ||
<math>k</math>-gons and <math>2k</math> triangles such that every vertex is incident with | <math>\,k</math>-gons and <math>\,2k</math> [[triangle|triangles]] such that every [[vertex]] is incident with | ||
three triangles and one <math>k</math>-gon. | three triangles and one <math>\,k</math>-gon. |
Текущая версия от 14:03, 2 декабря 2011
Antiprism — антипризма.
The antiprism [math]\displaystyle{ \,A_{n} }[/math], [math]\displaystyle{ n \geq 3 }[/math], is the plane regular graph of degree 4 (an Archimedean convex polytope). In particular, [math]\displaystyle{ \,A_{3} }[/math] is the octahedron.
The [math]\displaystyle{ \,k }[/math]-antiprism is the 4-regular plane graph consisting of two [math]\displaystyle{ \,k }[/math]-gons and [math]\displaystyle{ \,2k }[/math] triangles such that every vertex is incident with three triangles and one [math]\displaystyle{ \,k }[/math]-gon.