Achromatic status: различия между версиями
Перейти к навигации
Перейти к поиску
Glk (обсуждение | вклад) (Создана новая страница размером '''Achromatic status''' --- ахроматический статус. Let <math>G</math> be a connected graph with its ''achromatic num...) |
KEV (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Achromatic status''' | '''Achromatic status''' — ''[[ахроматический статус]].'' | ||
Let <math>G</math> be a connected graph with its ''achromatic number'' <math>\psi(G) = | Let <math>\,G</math> be a [[connected graph]] with its ''[[achromatic number]]'' <math>\,\psi(G) =k</math>. The '''achromatic status''' <math>\sum \psi(G)</math> is the minimum value of the ''[[total status]]'' for a set <math>\,X</math> of <math>\,k</math> [[vertex|vertices]] each from a different set <math>\,V_{i}</math> in the partition of <math>\,V</math>, where minimum is taken over all possible partitions of <math>\,V</math> that satisfy (1) and (2) from the | ||
k</math>. The ''' achromatic status''' <math>\sum \psi(G)</math> is the minimum value of the ''total status'' for a set <math>X</math> of <math>k</math> vertices each from a different set | |||
<math>V_{i}</math> in the partition of <math>V</math>, where minimum is taken over all | |||
possible partitions of <math>V</math> that satisfy (1) and (2) from the | |||
definition of achromatic number. | definition of achromatic number. |
Текущая версия от 11:47, 3 ноября 2011
Achromatic status — ахроматический статус.
Let [math]\displaystyle{ \,G }[/math] be a connected graph with its achromatic number [math]\displaystyle{ \,\psi(G) =k }[/math]. The achromatic status [math]\displaystyle{ \sum \psi(G) }[/math] is the minimum value of the total status for a set [math]\displaystyle{ \,X }[/math] of [math]\displaystyle{ \,k }[/math] vertices each from a different set [math]\displaystyle{ \,V_{i} }[/math] in the partition of [math]\displaystyle{ \,V }[/math], where minimum is taken over all possible partitions of [math]\displaystyle{ \,V }[/math] that satisfy (1) and (2) from the definition of achromatic number.